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ABSTRACT 

 
Generating the entire permutation sample space especially when sample sizes are not small have been a major problem in 
constructing an exact test of significance of a rank statistic.  Recently, the use of softwares for computing statistical tests 
has become common. However, procedures on this software for calculating the significance levels for many 
nonparametric tests are based on asymptotic results. These asymptotic results are only reliable when sample sizes are 
large enough. Unfortunately, the definition of what constitute a large sample size for most statistics is quite vague. The 
aim of this paper is to formulate a method for obtaining the exact distribution of a rank statistic. The proposed method is 
based on combinatorics in the representation of the probability generating function of the test statistic. The proposed 
method bypasses the problem of actually carrying out a complete enumeration in a permutation test. Essentially, the 
exact critical values for the Wilcoxon Rank Sum (WRS) test statistic are produced. The asymptotic property of the WRS 
is carefully studied and the minimum sample size required for the application of the large sample approximation is 
provided. 
 
Keywords: Wilcoxon Rank Sum Test, exact test, rank test, permutation test, combinatorics. 
 
INTRODUCTION 
 
The risk in decision making cannot be totally eliminated 
but it can be controlled if correct statistical procedures are 
employed. The unconditional permutation approach is a 
statistical procedure that ensures that the probability of a 
type I error is exactly  , thus ensuring that the resulting 
distribution of the test statistic is exact, see Agresti 
(1992), Good (2000), Pesarin (2001), Odiase and 
Ogbonmwan (2005) and Ogbonmwan et al. (2007). The 
unconditional exact permutation approach where row and 
column totals are allowed to vary with each permutation 
is very much unlike the conditional exact permutation 
approach of fixing the row and column totals (Headrick, 
2003; Bagui and Bagui, 2004; Odiase and Ogbonmwan, 
2005). Exact tests constructed by restricting attention to a 
conditional reference set of contingency tables with 
margins fixed at the values actually observed is not 
always true in nature. The unconditional permutation 
approach is computationally very demanding and more 
complex than the conditional approach (Agresti, 1992; 
Good, 2000; Opdyke, 2003). Earlier study Agresti (1992) 
observed that the results obtained from the conditional 
and unconditional permutation approaches can be quite 
discrepant. 
           
Another study Scheffe (1943) showed that the 
permutation approach is the only possible technique of 
constructing exact tests of significance for a general class 

of problems. Hoeffding (1952) remarked that this 
permutation test is asymptotically as powerful as the best 
parametric test.  There are several Monte Carlo methods 
that can be used in generating exact p-values. The most 
widely used is the bootstrap re-sampling technique 
developed by Efron (1979).  
          
The Bayesian and the Likelihood approaches can be 
found in Bayarri and Berger (2004), Spiegelhalter (2004). 
All these alternative approaches to the unconditional 
permutation approach only give approximate results. 
Exact procedures are the best and should always be 
applied whenever it is practically possible, Lehmann 
(1986) and Good (2000). Permutation tests provide exact 
results especially when complete enumeration is possible,  
Pesarin (2001). A big challenge in using nonparametric 
test is the availability of computational formulas and 
tables of exact critical values. This continues to be a 
problem as revealed by a survey of 20 in-print general 
college statistics texts, Fahoome (2002). Many 
nonparametric tests have large sample approximations 
that can be used as an alternative to tabulated exact 
critical values. These approximations are useful 
substitutes if the sample size is sufficiently large and 
hence obviate the need for locating tables of exact critical 
values. However, there is no generally agreed upon 
definition of what constitutes a large sample size for most 
statistics (Bergmann et al., 2000; Fahoome, 2002). A 
complete enumeration of the permutation sample space 
for the purpose of constructing an exact test of 
significance is only possible when sample sizes are small 
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(Odiase and Ogbonmwan, 2005; Ewere and Ogbonmwan, 
2020). The consideration given in this article produces the 
exact distribution of the Wilcoxon Rank Sum test statistic 
(WRS) by precisely tracking the number of permutations 
without carrying out a complete enumeration. Thus, 
providing the possibility of finding the exact distribution 
of the WRS for larger sample sizes. When sample sizes 
are large, the exact distribution of the WRS can be 
approximated by the normal approximation. We study the 
convergence of the normal approximation to the exact 
distribution of the WRS and provide the minimum sample 
size required for the application of the asymptotic 
distribution. Computations are done using the computer 
algebra Mathematica 6.0. 
 
 
MATERIALS AND METHODS 
 
Methodology 
Exact distribution of the Wilcoxon rank sum test 
The Wilcoxon Rank Sum Test is a nonparametric 
alternative to the two-sample t-test. Suppose we have two 
independent samples 

1
...,2,1 nXXX and 

2
,...,, 21 nYYY  of 

sizes 1n  and 2n drawn from two continuous populations 
whose distributions are F  and G  respectively. We wish 
to test the null hypothesis GFH :0 . The alternatives 

could be ,:1 GFH   ,:1 GFH   ,:1 GFH  . 

The Wilcoxon Rank Sum Test statistic WRS[ 1n , 2n ]  is 
the sum of the ranks from one of the samples. That is 

WRS[ 1n , 2n ]= 


1

1
1 ,

n

i
ir    [1] 

Where 1,1 )1(1, nir i   represents the ranks of the first 
sample. 
It rejects the null hypothesis 0H  if the sum of the ranks 

of the sX i `  in the combined ordered arrangement of the 
two samples is either too large or too small. Here, too 
large or two small implies WRS[ 1n , 2n ]  1W  or 

WRS[ 1n , 2n ] W  respectively. 1W  and W  are the 
upper-tail and lower-tail exact critical values respectively 
of the distribution of WRS[ 1n , 2n ] and   is the level of 

significance of the test. The values for 1W  and W  are 

provided in Table 1 The null distribution of WRS[ 1n , 2n ] 

is found by assuming that iX  and jY  are identically 

distributed. This is true only when 0H  is true in the two-

tailed test. If the iX  and the jY  are independent and 
identically distributed, then every arrangement of the X’s 

and Y’s in the ordered combined sample is equally likely. 
This is the basic principle behind many rank tests. 
          
The probability distribution of WRS[ 1n , 2n ] may be 
obtained by considering the probability distribution of the 
sum of 1n  integers selected at random, without 

replacement, from among the integer from 1 to 1n + 2n . 

The number of ways of selecting 1n  integers from a total 

number of 1n + 2n  integers is  

 
!!

!

21

21

1

21

nn
nn

n
nn 








 
                               [2] 

and each has probability 1  of occurring. Hence the 
probability that WRS[ 1n , 2n ]= 1K  may be found by 

counting the number of different sets of 1n  integers from 

1 to 1n + 2n  that add up to the value 1K  and then 
dividing by  . However, as the sample sizes increase, it 
becomes difficult to obtain the distribution of 
WRS[ 1n , 2n ] because of the very large cardinality of the 
permutation sample spaces. As an example, if 

1n = 2n =15, there are 155,117,520 associated permutation 
sample spaces. In such instances, the large sample 
approximation is usually used. But, there is no clear 
definition of what constitute a large sample for 
WRS[ 1n , 2n ],  (Fahoome, 2002; Ogbonmwan et al., 
2007). 
        
To calculate the probability that a statistic X based on 
ranks will take a value x which we denote as 

  xXob Pr , it is therefore only necessary to obtain 
the number of cases satisfying the condition xX  . 
Following the idea of Baglivo et al. (1996), we formulate 
a combinatorial problem and develop generating functions 
to solve the problem formulated. This provides useful 
insight into the exact null distribution of the WRS 
statistic. 
 
Combinatorial Problem 
Suppose we have n  observations which are ranked 1, 2, 
3…, n . In how many   different ways is it possible to 
divide these n  observations among k  samples such that 
the thi  sample iT  contains in  observations and the sum 

of the ranks of these in  observations in sample iT  is ir  

with 



k

i
inn

1
 and  ?12

1
1




nnrr
k

i
i  Let the 

number be: 
      kk rrrnnnPrlistnlistP ...,,...,:, 2,1,2,1    [3]              
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We can calculate this number  rlistnlistP ,  by 
counting the relevant partitions.              There are 
 

!!...,!
!...

21

21

k

k

nnn
nnn 

 possible permutations of the n  

variates of the k  samples of sizes kini ,...,2,1,   
which are equally likely with 

probability
1

21 !!...,!
!












knnn
n . The number 

 rlistnlistP ,  can easily be obtained for small n  and 
k  by counting the relevant partitions, for example, 
     27,8,2,3 P  which requires only 10 distinct 

arrangements (partitions). However, when n  and k  are 
not as small as in the above example, this method of 
obtaining  rlistnlistP ,  fails because of the large 
associated permutation sample spaces. For instance, when 

3,7,10 321  nnn , there are 22,170,720 distinct 
arrangements of the ranks. Admittedly, it is very difficult 
to carry out this enumeration manually in order to 
compute  rlistnlistP , . 
         
To overcome this problem of enumeration, we find the 
generating function for the number  rlistnlistP , . To 

do this, Let  ix  be a variable governing the number of 

observations in the thi  sample and  iy  be a variable 
governing the sum of the ranks of the observations in the 

thi  sample. Then, the generating function for the number 
 rlistnlistP ,  is given as   

       
 











n

j

j
k

i
iyixknp

1 1
,                               [4] 

See Ewere and Ogbonmwan (2010a) 
Obviously, the numbers  rlistnlistP ,  are the 

coefficients of     


k

i

rn ii iyix
1

 of the polynomial 

 knp , . Hence,  rlistnlistP ,  is obtained by selecting 

the coefficients of    


k

i

rn ii iyix
1

. However, this 

method of enumeration is not as fast as one would expect 
due to the fact that the number of terms of the generating 
function in eqn [4] are of order nk  which is not too small 
even if n and k are not very large.  
          
To improve on the computational efficiency of eqn [4], 
we let  .,...,, 21 knnnnlist   In this case, the 

generating function  nlistp  for the number 

 rlistnlistP ,   have number of terms whose order is 

only  knnnlMultinomia ,...,, 21  which is smaller than 
nk . Clearly, this new generating function  nlistp  are 

the coefficients of  


k

i

n iix
1

of the generating 

function  knp , . To speed up computations, the 
generating function ][nlistp  is defined recursively as: 

      



k

i
ki

n
k nnnnpiynnnpnlistp

1
2121 ,...,1,...,,],...,,[][      [5],  

See Ewere and Ogbonmwan (2010b).  
 
In eqn [5], the number of ranked observations in the thi  
sample is reduced by one during the exchangeability 
(rearrangement) process by allowing the thn  rank to be a 
member of the thi  sample. By being systematic and 
proceeding in this orderly fashion from one 
rearrangement to the next, we have substantially reduced 
the time required to examine a series of rearrangements. 
This idea has been suggested by Good (2000). 
 
The exact null distribution of WRS[ 1n , 2n ] is obtained 
by finding the generating function of the test statistic. The 
generating function for WRS[ 1n , 2n ] can be written as:                        
       1

12121 ,Pr],[ KtKnnWRSobnnWRSG     [6] 

  
2

10 1



nnK and 2K  

12
1 Knn


          [7]                                    

Then                
       

 1

2121
121 ,

,,,],[Pr
nnBinomial
KKnnPKnnWRSob     [8]                        

where 21 nnn  and  
!!

!],[
21

21
1 nn

nnnnBinomial 
   

Eqn [6] can be used to calculate the distributional 
characteristics of WRS [ 1n , 2n ].  
 
The large sample approximation 
When sample sizes are large, the time required to 
compute a permutation distribution can be prohibitive 
even if we are taking advantage of one of the optimal 
computing algorithm (Good, 2000). Fortunately, when 
sample sizes are large, we can make use of an asymptotic 
approximation in place of the exact distribution. 
However, asymptotic approximations are to be avoided 
except with very large samples (Good, 2000). This is 
because they can be grossly in error (Micceri, 1989; 
Mudholkar and Hutson, 1997).  
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Table 1.   Exact Critical Values for the Wilcoxon Rank Sum test. 

1n  2n  9000.0W  9500.0W  9750.0W  9900.0W  9950.0W  9975.0W  9990.0W  

2 

2 
3 
4 
5 

- 
8   (3) 
10 (4) 
11 (5) 

- 
- 
- 
12 (4) 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

3 

3 
4 
5 
6 

13 (7) 
16 (8) 
18 (9) 
20 (10) 

14 (6) 
17 (7) 
19 (8) 
21 (9) 

- 
- 
20 (7) 
22 (8) 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

4 

4 
5 
6 
7 

22 (13) 
25 (15) 
28 (16) 
31 (17) 

24 (12) 
27 (13) 
30 (14) 
33 (15) 

25 (11) 
28 (12) 
31 (13) 
34 (14) 

- 
29 (11) 
32 (12) 
36 (12) 

- 
- 
33 (11) 
37 (11) 

- 
- 
- 
- 

- 
- 
- 
- 

5 

5 
6 
7 
8 

34 (21) 
37 (23) 
41 (24) 
44 (26) 

35 (20) 
39 (21) 
43 (22) 
46 (24) 

37 (18) 
41 (19) 
44 (21) 
48 (22) 

38 (17) 
42 (18) 
46 (19) 
50 (20) 

39 (16) 
43 (17) 
48 (17) 
52 (18) 

- 
44 (16) 
49 (16) 
53 (17) 

- 
- 
- 
54 (16) 

6 

6 
7 
8 
9 

47 (31) 
51 (33) 
55 (35) 
59 (37) 

49 (29) 
54 (30) 
58 (32) 
62 (34) 

51 (27) 
56 (28) 
60 (30) 
64 (32) 

53 (25) 
58 (26) 
62 (28) 
67 (29) 

54 (24) 
59 (25) 
64 (26) 
69 (27) 

55 (23) 
60 (24) 
65 (25) 
70 (26) 

- 
62 (22) 
67 (23) 
72 (24) 

7 

7 
8 
9 
10 

63 (42) 
67 (45) 
72 (47) 
76 (50) 

65 (40) 
70 (42) 
75 (44) 
80 (46) 

68 (37) 
73 (39) 
78 (41) 
83 (43) 

70 (35) 
76 (36) 
81 (38) 
86 (40) 

72 (33) 
77 (35) 
83 (36) 
88 (38) 

73 (32) 
79 (33) 
85 (34) 
90 (36) 

75 (30) 
81 (31) 
87 (32) 
92 (34) 

8 

8 
9 
10 
11 

80 (56) 
85 (59) 
91 (61) 
96 (64) 

84 (52) 
89 (55) 
95 (57) 
100 (60) 

86 (50) 
92 (52) 
98 (54) 
104 (56) 

90 (46) 
96 (48) 
102 (50) 
108 (52) 

92 (44) 
98 (46) 
104 (48) 
110 (50) 

93(43) 
100(44) 
106(46) 
112(48) 

95(41) 
102(42) 
109(43) 
115(45) 

9 

9 
10 
11 
12 

100(71) 
106(74) 
112(77) 
117(81) 

104(67) 
110(70) 
116(73) 
122(76) 

108(63) 
114(66) 
120(69) 
126(72) 

111(60) 
118(62) 
125(64) 
131(67) 

114(57) 
121(59) 
127(62) 
134(64) 

116(55) 
123(57) 
130(59) 
137(61) 

118(53) 
126(54) 
133(56) 
140(58) 

10 

10 
11 
12 
13 

122(88) 
128(92) 
135(95) 
141(99) 

127(83) 
133(87) 
140(90) 
147(93) 

131(79) 
138(82) 
145(85) 
151(89) 

135(75) 
142(78) 
150(80) 
157(83) 

138(72) 
146(74) 
153(77) 
160(80) 

141(69) 
148(72) 
156(74) 
164(76) 

144(66) 
152(68) 
160(70) 
167(73) 

11 

11 
12 
13 
14 

146(107) 
153(111) 
160(115) 
167(119) 

152(101) 
159(105) 
166(109) 
173(113) 

156(97) 
164(100) 
171(104) 
179(107) 

161(92) 
169(95) 
177(98) 
185(101) 

165(88) 
173(91) 
181(94) 
189(97) 

168(85) 
176(88) 
184(91) 
193(93) 

171(82) 
180(84) 
188(87) 
197(89) 

12 

12 
13 
14 
15 

172(128) 
180(132) 
187(137) 
194(142) 

179(121) 
186(126) 
194(130) 
202(134) 

184(116) 
192(120) 
200(124) 
208(128) 

190(110) 
198(114) 
207(117) 
215(121) 

194(106) 
202(110) 
211(113) 
220(116) 

197(103) 
206(106) 
215(109) 
224(112) 

201(99) 
210(102) 
220(104) 
229(107) 

13 
13 
14 
15 

201(150) 
209(155) 
217(160) 

208(143) 
216(148) 
224(153) 

214(137) 
222(142) 
231(146) 

220(131) 
229(135) 
238(139) 

225(126) 
234(130) 
243(134) 

229(122) 
238(126) 
248(129) 

233(118) 
243(121) 
253(124) 

14 14 
15 

231(175) 
240(180) 

239(167) 
248(172) 

245(161) 
255(165) 

253(153) 
263(157) 

258(148) 
268(152) 

262(144) 
273(147) 

268(138) 
278(142) 

15 15 264(201) 272(193) 280(185) 288(177) 293(172) 298(167) 304(161) 
20 20 458(362) 471(349) 482(338) 495(325) 504(316) 512(308) 521(299) 
30 30 1002(898) 1026(868) 1047(846) 1071(822) 1088(807) 1102(793) 1120(776) 
40 40 1754(1486) 1791(1449) 1823(1417) 1861(1379) 1886(1354) 1909(1331) 1937(1303) 
50 50 2711(2339) 2764(2286) 2809(2241) 2861(2189) 2897(2153) 2929(2121) 2969(2081) 
60 60 3875(3405) 3944(3345) 4003(3295) 4072(3241) 4118(3206) 4161(3175) 4214(3138) 
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Several researchers have described the use of classic 
parametric statistics in the face of assumption violations 
as invalid (Keselman et al., 1998; Leech and 
Onwuegbuzie, 2002; Wilcox, 2001; Grissom and Kim, 
2005; Erceg-Hurn and Mirosevich, 2008). To better 
understand this, Royeen (1986) identified five published 
studies that used parametric statistics. For each study, the 
data were checked whether they met the assumptions for 
the parametric statistics used. In three of the five studies, 
the assumptions were not met. Next, the appropriate 
nonparametric statistic was computed on the data. For 
each of the three studies that did not meet the 
assumptions, there were large differences in the results 
yielded by the nonparametric statistic when compared 
with the published results from the parametric statistic. 
Thus, this examination demonstrates that if the 
assumptions are not met, the results can be very 
misleading. 
         
The fundamental asymptotic result for the permutation 
distribution of the two-sample test statistic for a location 
parameter was first stated by Madow (1948) and 
formalized by Hoeffding (1951, 1952) who demonstrated 
convergence of the distribution of the studentized test 
statistic under the alternative as well as under the null 
hypothesis. 
        Let     nn XXTT ,...,1  be the test statistic and 

let n  and n  be its first and second moments 

respectively. Then the permutation distribution nF  of  

nZ  is 
n

nnT


                 [9] 

Eqn [9] is obtained by randomly rearranging the 
subscripts of the arguments of nT  and this converges to 

 , the Gaussian (normal) distribution function. 
       
To enable researchers who do not have access to the 
necessary tables of critical values to employ these tests, it 
is important to determine the minimum sample size in 
order to apply the large sample approximation for various 
statistics. Besides, the statistical assumption tests built 
into software such as SPSS often do a poor job of 
detecting violations from normality and homoscedasticity 
(Jaccard and Guilamo-Ramos, 2002). 
       
In order to determine the minimum sample size required 
for the application of asymptotic results of the WRS test, 
we use the Bradley’s (1978) conservative estimates of 
0.045 < Type I error rate < 0.055 and 0.009 < Type I error 
rate < 0.011 as measures of robustness when nominal   
was set at 0.05 and 0.01, respectively. Generally, the 
stringent criterion  1.19.0 0   where 0  is the 
true probability of a type I error when one or more of a 

test’s assumptions are violated and the null hypothesis is 
true seems more appropriate to illustrations of 
‘convergence’ than the liberal criterion given by Cochran 
(1952), who considered actual significance levels less 
than 20% above the nominal level to be acceptable, 
Sullivan and D’Agostino (1992).  The sample sizes were 
increased until the Type I error rates converged within 
these acceptable regions. 
 
RESULTS AND DISCUSSION 
 
The values in each cell of Table 1 represent the upper and 
lower critical values of the Wilcoxon Rank Sum test 
statistic with the lower critical values in brackets. We 
study the convergence of the asymptotic distribution (the 
normal distribution) to the exact distribution of the WRS 
test both numerically and graphically in Tables 1 through 
7 and Figures 1 through 10.  We determine the minimum 
sample size in order to apply the asymptotic distribution 
using the Bradley’s conservative estimate. 
 
Table 2. Exact and Asymptotic Type I error rates for 
WRS 01.0  

n1 n2         Exact    Asymptotic 
 5  5     0.00793651    0.0141401 
 6  6     0.00757576    0.0124873 
 7  7     0.00874126    0.0126737 
 8  8     0.00738151    0.0104313 
 9  9     0.00937886    0.0121705 
10 10     0.00927169    0.0116711 
11 11     0.00961538    0.0117428 
12 12     0.0086356    0.0104607 
13 13     0.00954935    0.0112432 
14* 14*     0.00927701    0.0107985 
15 15     0.00927686    0.0106667 
16 16     0.00946554    0.0107518 
17 17     0.00979409    0.0109963 
18 18     0.00935297    0.0104547 
19 19     0.00991213    0.0109589 
20 20     0.00976838    0.0107452 

 
Table 3.  Exact and Asymptotic Type I error rates for 
WRS 025.0  

n1 n2         Exact    Asymptotic 
 4  4      0.014286    0.021654 
 5  5      0.015873    0.023601 
 6  6      0.0205628    0.027332 
 7  7      0.0189394    0.0238227 
 8  8      0.0249417    0.0293536 
 9*  9*      0.0199918    0.0234728 
10 10      0.0216285    0.0246835 
11 11      0.0236536    0.0263654 
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12 12      0.022451    0.0248236 
13 13      0.0220583    0.0241705 
14 14      0.0248678    0.0268157 
15 15      0.0226669    0.0244071 
16 16      0.0234075    0.0250082 
17 17      0.0243428    0.0258237  
18 18      0.0235424    0.0249051 
19 19      0.0248279    0.0261017 
20 20      0.0245452    0.0257312 

 
Table 4.  Exact and Asymptotic Type I error rates for 
WRS 05.0  

n1 n2         Exact    Asymptotic 
 4  4     0.0285714    0.0416323 
 5  5     0.047619    0.0585927 
 6  6     0.0465368    0.0546573 
 7  7     0.0486597    0.0551116 
 8*  8*     0.0414918      0.046446 
 9  9     0.046956    0.0511725 
10 10     0.0446048    0.0481518 
11 11     0.0439731    0.0470205 
12 12     0.0443669    0.0470343 
13 13     0.0454236     0.0477904 
14 14     0.0469341    0.049052 
15 15     0.0487629    0.0506708 
16 16     0.0469062    0.0486272 
17 17     0.0493437    0.0509127 
18 18     0.0485296    0.0499635 
19 19     0.0482046    0.0495223 
20 20     0.0482498    0.049466 

 
Table 5. Exact and Asymptotic Type I error rates for 
WRS 10.0  

n1 n2         Exact    Asymptotic 
 3  3     0.10000      0.137617 
 4  4     0.10000    0.124106 
 5  5     0.075397    0.0872629 
 6  6     0.089827    0.100092 
 7  7     0.082459    0.0898563 
 8*  8*     0.097436    0.103789 
 9  9     0.095125    0.100206 
10 10     0.095158    0.099383 
11 11     0.096593    0.10019 
12 12     0.098904    0.102012 
13 13     0.092844    0.0954888 
14 14     0.096789    0.0991284 
15 15     0.093634    0.095681 
16 16     0.098187    0.100023 
17 17     0.096608    0.098242 
18 18     0.095819    0.0972845 
19 19     0.095621    0.0969432 
20 20     0.095876    0.0970745 

Table 6. Exact and Asymptotic Type I error rates for 
WRS 005.0  

n1 n2         Exact    Asymptotic 
 5  5    0.00396825   0.00814685 
 6  6   0.004329   0.0081546 
 7  7   0.0034965   0.00635814 
 8  8   0.0034965   0.00585932 
 9  9   0.00388729   0.00592465 
10 10   0.00446535   0.00630572 
11 11   0.00416482   0.00573401 
12 12   0.00414658   0.0055372 
13 13   0.00430052   0.00556705 
14 14   0.00457314   0.0057501 
15 15   0.00493741   0.00604638 
16 16   0.00477527   0.00578232 
17 17   0.00474725   0.00567714 
18 18   0.00481544   0.00568552 
19 19   0.00495689   0.00577918 
20 20   0.0047418   0.0054999 
21 21   0.00462845   0.0053353 
22 22   0.00493681   0.00562165 
23 23   0.00493478   0.00558331 
24 24   0.0049846   0.00560284 
25* 25*   0.00478432   0.00536339 
26 26   0.00492306   0.0054817 
27 27   0.00482933   0.00535919 
28 28   0.00478341   0.00528889 
29 29   0.00477642   0.00526094 
30 30   0.00480184   0.00526824 
31 31   0.00485479   0.0053054 
32 32   0.00493154   0.00536824 
33 33   0.00483841   0.00525655 
34 34   0.00495948   0.00536708 
35 35   0.00491999   0.00531282 

 

Table 7.  Exact and Asymptotic Type I error rates for 
WRS 0025.0  

n1 n2         Exact    Asymptotic 
 6  6      0.0021645      0.00520282 
 7  7      0.00203963      0.00440432 
 8  8      0.002331      0.00432575 
 9  9      0.00199506      0.00353844 
10 10      0.0019431      0.00325094 
11 11      0.00205123      0.0032141 
12 12      0.00225653      0.00332835 
n1 n2         Exact    Asymptotic 
13 13      0.00210757      0.00303857 
14 14      0.00245278      0.00335493 
15 15      0.00246981      0.00329566 
16 16      0.00224209      0.00296805 
17 17      0.00239608      0.00308823 
18 18      0.00232243      0.00295661 
19 19      0.00230915      0.00289976 
20 20      0.0023406      0.00289799 
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21 21      0.00240712      0.00293864 
22 22      0.00231233      0.00280479 
23 23      0.00243746      0.00291553 
24 24      0.00241165      0.00286333 
25 25      0.00241661      0.00284695 
26 26      0.00244654      0.00285945 
27 27      0.00249737      0.00289584 
28 28      0.00243136      0.0028082 
29 29      0.00239359      0.0027524 
30 30      0.0024972      0.00284885 
31 31      0.00249536      0.0028336 
32 32      0.00240266      0.00272278 
33 33      0.00243653      0.00274742 
34 34      0.00248261      0.00278551 
35* 35*      0.00244438      0.00273515 
36 36      0.00242278      0.00270304 
37 37      0.0024153      0.00268644 
38 38      0.00242002      0.0026832 
39 39      0.00243542      0.00269159 
40 40      0.0024603      0.00271038 
41 41      0.0024937      0.00273834 
42 42      0.00246273      0.00269937 
43 43      0.0024433      0.00267283 
44 44      0.00243394      0.00265723 
45 45      0.00249759      0.00271778 

 

Plots of the exact and asymptotic cumulative 
distribution functions of the WRS test statistic for 
different sample sizes. 
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Table 1 provides exact critical values for the WRS test 
statistic. The exact critical values for the test statistic has 
been provided for some combination of sample sizes as it 
is not practical to present the entire distribution here, but 
these are easily obtained from the computer program 
available on request from the authors. 
 
When sample sizes are large, it is reasonable to use the 
large sample approximation. But the question has always 
been “How large is large? Providing exact critical values 
for the WRS test statistic for small and larger samples do 
not only negate the need for approximations in many 
additional settings, but they also allow us to study the 
approximation and make more reasonable inference about 
the usefulness of the approximation. What we are more 
concerned about is what the performance of the 
approximation in the smaller-sample conditions might 
imply about conditions for which there are still no exact 
tables. 
          
Tables 2 through 7 shows the exact and asymptotic Type I 
error rates for the WRS test statistic for nominal level of 
significance ,01.0  ,025.0  05.0 , 10.0 , 005.0  
and 0025.0  respectively. We use these results to 
determine the minimum sample sizes necessary to use the 
large sample approximation of the critical value of the 
WRS statistic. We superimpose the curve of the normal 
distribution to that of the WRS in Figures 1 through 
Figures 10. The exact distribution of the WRS test 
becomes more stable and closer to the normal distribution 
as the group sample size increases as depicted in Figures 
1 through 10. The normal approximation of the exact 
critical values of the WRS test is adequate when 

1421  nn (14 per sample) for ,01.0  

921  nn for 025.0 , 821  nn  for 05.0  
and 10.0 . A minimum of 25 and 35 per sample is 
adequate to apply the normal approximation for 

005.0 and 0025.0  respectively. The 
minimum sizes per sample required to apply the 
asymptotic distribution have been reported and are 
asterisked in Tables 2 through 7. These recommendations 
in this paper are based on the results that converged using 
the Bradley’s (1978) conservative estimates. 
          
It is instructive here to point out the contributions of other 
authors as regards the minimum sample size for the 
application of the large sample approximation for the 
WRS statistic. Mann and Whitney (1947) considered the 
case of unpaired data with samples of equal sizes and 
reported tables only up to sample sizes of 8, that is, 

821  nn  and concluded that “at this point the 
distribution is almost normal”. They probably failed to 
recognize the influence upon robustness of  , Bradley 
(1978). And very early, it was thus acknowledged that the 
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normal approximation was acceptable for rather small 
sample sizes. Conover (1971) recommended that one or 
both sample must exceed 20. Gibbons (1971) placed the 
lower limit at 12 per sample. Another study Sprent (1989) 
also suggested that one or both samples must exceed 20. 
While, Deshpande et al.  (1995) stated that the combined 
sample size should be at least 20 to use a large sample 
approximation of the critical value of the WRS statistic. 
Fahoome (2002) recommended a minimum of 15 and 29 
per sample for 05.0  and 01.0  respectively. 
Ogbonmwan et al. (2007) suggested a minimum of 7 per 
sample to apply the asymptotic results for 05.0 . 
The definition of what constitute a large sample for the 
WRS test is quite vague. We have attempted to address 
this vagueness in this article.  The results in Table 2 
clearly demonstrate that the large sample approximation 
of the critical value prevents the statistic from converging 
with nominal 01.0  if Bergmann et. al (2000) are 
correct with their perception of common practices using 
as few as 11 per sample. 
 
CONCLUSION 
 
In this study, a straight forward but logical approach has 
been adopted in developing a procedure for constructing 
an exact test of significance. With this approach, the exact 
critical values of the Wilcoxon Rank Sum test have been 
accurately generated, thereby ensuring that the probability 
of making a type I error is exactly . Numerical 
evaluations and graphical illustrations of the asymptotic 
property of the WRS test have been presented.  We feel, 
however, that such representations (numerical and 
graphical) could be valuable tools when introducing these 
statistics. This claim is well exemplified by the following 
quotation from Bellera et al. (2010): 
 
We examined a convenience sample of 12 introductory 
statistics textbooks and three nonparametric statistics 
textbooks available to students at the McGill University 
Science Library. None of these books included graphical 
display of the distributions of the Wilcoxon Statistics. 
Only one book (Lehmann, 1998) included recursive 
formulas. 
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